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A b s t r a c t  
T h i s  p a p e r  p r e s e n t s  a  p r o b a b i l i s t i c  f r a m e w o r k  f o r  t h e  a s s e s s m e n t  o f  g r o u n d - w a t e r  p o l l u t i o n  

p o t e n t i a l  b y  p e s t i c i d e s  i n  t w o  a d j a c e n t  a g r i c u l t u r a l  w a t e r s h e d s  i n  t h e  M i d - A t l a n t i c  C o a s t a l  P l a i n .  
I n d i c e s  f o r  e s t i m a t i n g  s t r e a m s  v u l n e r a b i l i t y  t o  p o l l u t a n t s ’  l o a d  f r o m  t h e  s u r f i c i a l  a q u i f e r  a r e  a l s o  
p r e s e n t e d .  T h e  m e t h o d o l o g y  c o m b i n e s  p h y s i c a l l y  b a s e d  m a s s  f r a c t i o n  m o d e l s  ( o r  i n d i c e s ) ,  w h i c h  
d e s c r i b e  n a t u r a l  a t t e n u a t i o n  o f  p e s t i c i d e s  i n  t h e  s u b s u r f a c e  w i t h  M o n t e  C a r l o  s i m u l a t i o n s  a n d  
A r c V i e w  G I S  t o  g e n e r a t e  p o l l u t i o n  p o t e n t i a l  c u m u l a t i v e  d i s t r i b u t i o n s  i n  t h e  s o i l  f o r  a  s e l e c t e d  
p e s t i c i d e .  T h e  p o l l u t i o n  p o t e n t i a l  i s  d e f i n e d  h e r e  a s  t h e  p r o b a b i l i t y  o f  e x c e e d i n g  a  p r e s c r i b e d  
t h r e s h o l d  l i m i t  o f  l e a c h e d  f r a c t i o n  o f  a  p e s t i c i d e ’ s  m a s s  a p p l i e d  p e r  a c r e  a t  t h e  s o u r c e .  
U n c e r t a i n t y  o f  s o i l  p a r a m e t e r s ,  s u c h  a s  t h e  s a t u r a t e d  h y d r a u l i c  c o n d u c t i v i t y ,  p o r o s i t y 7  f i e l d  
c a p a c i t y ,  a n d  o r g a n i c  c a r b o n  f r a c t i o n ,  a r e  b a s e d  o n  s t a t i s t i c s  a n d  d i s t r i b u t i o n s  r e l a t e d  t o  d r a i n a g e  
( S C S  h y d r o l o g i c )  s o i l  g r o u p s  a n d  s o i l  t e x t u r e .  P r o b a b i l i t y  d e n s i t y  f u n c t i o n s  a n d  c u m u l a t i v e  
d i s t r i b u t i o n s  f o r  t h e  l e a c h e d  m a s s  f r a c t i o n s  b e l o w  t h e  r o o t  z o n e  a r e  g e n e r a t e d  t h r o u g h  M o n t e  
C a r l o  s i m u l a t i o n s  f o r  d i f f e r e n t  h y d r o l o g i c  s o i l  g r o u p s  a n d  l a n d  u s e .  T h e  p r o b a b i l i s t i c  s c h e m e  i s  
a p p l i e d  t o  a s s e s s  t h e  v u l n e r a b i l i t y  o f  g r o u n d  w a t e r  i n  t w o  a g r i c u l t u r a l  w a t e r s h e d s  i n  t h e  M i d -  
A t l a n t i c  c o a s t a l  p l a i n  t o  a  s e l e c t e d  r e l a t i v e l y  s h o r t - l i v e d  p e s t i c i d e .  T h e  p r o b a b i l i t y  m a p s  a n d  
e x p e c t e d  l e a c h e d  f r a c t i o n s  o f  t h e  p e s t i c i d e  s h o w  t h a t  w e l l  d r a i n e d  l a n d s c a p e s  p o s e  g r e a t e r  r i s k s  
f o r  p o t e n t i a l  g r o u n d  w a t e r  p o l l u t i o n  b y  t h e  p e s t i c i d e .  I n  t h e  c a s e  o f  c u l t i v a t e d  l a n d s ,  t h e  M o n t e  
C a r l o  s i m u l a t i o n s  s h o w  t h a t  t h e  c o e f f i c i e n t  o f  v a r i a t i o n  f o r  t h e  l e a c h e d  m a s s  f r a c t i o n  i s  h i g h e r  
f o r  p o o r l y  d r a i n e d  t h a n  i n  w e l l  d r a i n e d  s o i l s  i n  t h e  a r e a .  

I n t r o d u c t i o n  
A g r i c u l t u r a l  a c t i v i t i e s  a r e  t h e  l e a d i n g  s o u r c e  o f  n o n p o i n t  s o u r c e  p o l l u t a n t s  ( N P S ) ,  w h i c h  
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1 9 9 8 ) .  A l t h o u g h  p e s t i c i d e s  a r e  c o m m o n l y  p r e s e n t  a t  l o w  c o n c e n t r a t i o n s  i n  g r o u n d  w a t e r ,  t h e y  
c a n  h a v e  c h r o n i c  i m p a c t  o n  t h e  e n v i r o n m e n t  a n d  h e a l t h .  M e t h o d s  a r e  n e e d e d  t o  p r e d i c t  i n  
a d v a n c e  t h e  f a t e  a n d  b e h a v i o r  o f  c h e m i c a l s  a p p l i e d  t o  t h e  s o i l  s u r f a c e  a n d  w h e t h e r  t h e y  p o s e  a  
t h r e a t  t o  s o i l  a n d  g r o u n d  w a t e r  r e s o u r c e s  G r o u n d - w a t e r  m o n i t o r i n g  i s  t o o  c o s t l y  t o  a d e q u a t e l y  
d e f i n e  t h e  e x t e n t  o f  t h e  p o l l u t i o n  p r o b l e m  a t  l a r g e  w a t e r s h e d  s c a l e s ,  a n d  t h e  c o s t  i n v o l v e d  i n  t h e  
c l e a n u p  o f  N P S  i s  n e a r l y  i m p o s s i b l e .  I t  i s  b e c o m i n g  e v i d e n t  t h a t  r e s e a r c h e r s  a n d  r e g u l a t o r y  
a g e n c i e s  a r e  i n c r e a s i n g l y  r e l y i n g  o n  m o d e l s  t o  p r e d i c t  t h e  t r a n s p o r t  a n d  b e h a v i o r  o f  c h e m i c a l s  i n  
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Khan and Liang (1989) coupled the attenuation factor (AF) index with a GIS for mapping 
pesticide contamination potential in soils Loague et al. (1995) and Diaz and Loague (2000) 
presented a GIS-based framework and first-order analysis for the assessment of the impact of 
data uncertainty on the leaching of NPS pollutants at the regional scale. Considering dispersive- 
reactive transport and separating the unsaturated zone into the root and intermediate-vadose 
zones, Hantush et al. (1999) presented first-order analysis with a GIS for the assessment of 
uncertainty of ground-water vulnerability to some pesticides in agricultural watersheds in the 
Mid-Atlantic coastal plains. ShukZa et al. (2000) implemented the AF model with a GIS on a 
county scale to screen a group of pesticides 

In this paper a process-based index solute leaching model is integrated with a GIS to describe 
uncertainties (first-two moments) and probabilities of ground-water vulnerability in the Mid- 
Atlantic coastal plain to a selected pesticide in two agricultural watersheds. The index describes 
the leached fraction of the pesticide at depth in the subsurface. Potential extension of the 
framework to surface water vulnerability to ground-water discharge is also presented. The Monte 
Carlo simulations (MC) are used to generate the first-two moments and probability density and 
cumulative distributions of the mass fractions for different combinations of the hydrologic soil 
groups and land use. The integration of the MC results with a GIS allows for spatial display of 
models output and the interpretation of the results in relationship to landscape patterns, including 
soil hydrologic groups and land use0 

Transport and Fate Models 
Figure l(a) depicts the soil-ground-water system under consideration, and Figure l(b) shows 

potential pathway in the aquifer to the stream* When pesticides are applied to the soil surface, 
their leached fractions below the root zone may be described by the following equation (Hantush 
et aZ., 2000) 

where 

in which A,& = the residual solute mass at the bottom of the root zone [M]; MO = the initial mass 
applied per unit area at the soil surface9 which is available for transport in soluble phase [M]; 

Pr = h (q I em )/ Dm is the soil root-zone Peclet number; Tr = h Rm /(q/e,,,) is the average 

residence time in the root soil [T]; q = the average flux per unit area in the root zone [L/T]; h = 

the depth of the root zone [L]; ,O = 6,,” R,m /em Rm ; k,,,= ln(2)& and kim= ln(2)/& are the 

degradation rates in the mobile and immobile phases, respectively [T-l]; &, &, = solute half-life 

in the mobile and immbile pahse, respectively [T]; Oim = the volumetric immobile water content; 
t& = the volumetric mobile water content; cx = is the apparent mass transfer coefficient [T-l] (i.e., 

mass transfer coefficient divided byR,& Rim= I+&, p&f+ K&I& CIim is the retardation factor in 
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the immobile phase, in which Jm and ICim are the fraction of soil bulk density and volumetric air 
contents in contact with the immobile water regions, respectively; R,,,= l+(‘& p&d + K~ &)/ em is 

the retardation factor in the mobile phase, in whichfm and K~ are the fraction of soil bulk density 
and volumetric air content in contact with the mobile phase, respectively; I&= (~~/~~)K~llg~+~~ 

is the effective (multiphase) dispersion coefficient in the mobile region [L*/T]; in which Dss = ( 
K~~~‘~/Tz*) Dgu = the soil gas diffusion coefficient [L2/T]; n = soil porosity in the dynamic reagion 

(i.e., mobile phase); DZ = soil longitudunal dispersion coefficient [L2/T]; p = the volatilization 

and crop uptake loss parameter; 0 = &Dg“ /d is the vapor-phase conductance across the air- 
boundary layer on soil surface [L/T]; pb = soil bulk density [M/L3]; I& = Henry’s constant 
[dimensionless]; S = transpiration rate [T-l]; F = transpiration-stream concentration factor; Dgu = 
the binary gaseous diffusion coefficient [L*/T]; and d = the thickness of air boundary layer on 
soil surface. 
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Fig. 1 Schematic presentation of transport pathways: (a) soil-ground-water model, and (b) stream- 
aquifer system 

Equation (1) is a modification of the leached-fraction expression of Van der Zee and Boesten 
(1991) for the effect of volatilization and lateral diffusive transfer in two-region soils. The 
extension of Equation 1, which describes leaching to the water table, A&, is straightforward, 

Ml =Mrexp { fi [J--l]] 2 
> w 

in which Pu and T,, are defined similarly with H replacing h and v = net water flux below the root 
zone, replacing q. Other parameters are defined similarly, but for the vadose soil below the root 
zone. These models assume steady state flow in the soil and uniform soil property within each 
zone. Hydrologic and climatic input variables are considered on annually averaged basis in this 
effort. The effect of immobile-water phase is not considered since the soil data in the application 
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site does not provide sufficient information for meaningful mobile-immobile phase transport 

analysis (c$~ = 4” = 0). A conservative scheme is implemented here in which pesticides losses 
below the biologically active root zone are ignored (e.g., Rae and Hornsby, 1991), in which case, 
emissions to the water table are given by A& = Mr. 

The moisture content in the root zone is assumed to be at field capacity (i.e., (3 = t&c) and 
flow below the root zone is restricted to gravity drainage, v = K(O), where K(O) = the unsaturated 
conductivity as a function of the moisture content in the soil below the root zone (intermediate 

vadose zone) [L/T]. By using the model K(O) = KS(C)/QSr”3 (Campbell, 1974), the avergage 

moisture content in the intermediate vadose zone can be described by this relationship: 

where KS = the saturated-soil hydraulic conductivity [L/T]; OS = saturated-soil water content; and 
b is an empirical parameter (refer to Clapp and Hornberger (1978) for tabulated values of the 

parameters KS, & and b for different soil textures). 
Figure 2 illustrates the ground-water drainage, which is conceptualized in Fig. l(b). It is 

assumed that the ground-water drainage coincides with the watershed drainage. If pesticides 
losses in the aquifer are negligible? the amount of a pesticide’s mass discharged to the stream 
from the entire watershed, k&,,, (Figs. 2) is the integral of net emissions to the water table, MU, 
over the watershed area: 

in which, A = the area of the watershed excluding the riparian buffers [L2]. In the case of aquifer 
losses, one can show that the residual mass of the solute discharged to the stream, considering 
further losses in the riparian zone, is given by 

in which Ta and TrP = the average residence time in the aquifer and the riparian buffer, 
respectively [T]; kO and krP = first-order reaction rate in the aquifer and the riparian buffer, 
respectively [T-t]; Ar = the area of the riparian buffer in the watershed. Note that, since Ar <-c A 

(i.e., c C-C 1), greater value of krP will be needed as ground water flows through the riparian zone 
for natural attenuation to have any significant impact on the net mass discharge to the stream. 
Information on the degradation of pesticides in aquifers and riparian zones is scarce and half-life 
is commonly reported for soils only. In the example watershed of Fig. 2 (area outside the riparian 

buffer is agricultural), ]]A Mu dA = Mu’ AB + M,,’ Ac + M,,D AD, where Mu* = Mu estimated for 

the soil hydrologic soil group *. 



/-y Riparian buffer (area = Ar) 
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Illustration of a watershed showing a stream, a riparian wooded 
hydrologic groups B, C, and De 

and soils of 

Study Site 
The site consists of two adjacent agricultural watersheds of the Chester River Basin. The 

watersheds are located to the north of the Chester Kiver in Kent County, Maryland. Morgan 
Creek and the Chesterville Branch drain both watersheds to the Chester River. 90 % of the 
landscape (Fi.g. 3a) is agricultural land and riparian wooded areas and orchards occupy much of 
the remaining portion. Corn, soybeans in and annual rotation with winter wheat are the major 
crops. The soil in this area ranges from loam to sandy and gravely loam with the silt loam as the 
dominant texture. The soil in the Chesterville Branch is moderately well drained, of hydrologic 
group B, and in Morgan Creek it ranges from moderately poorly drained, C, to moderately well 
drained, B (Fig. 3b). The surficial aquifer is shallow and predominantly sand and gravel of 
fluvial origin. The extensive agricultural activities at the site coupled with the relatively shallow 
water table make the aquifer and the streams vulnerable to agricultural chemicals. Dicamba is 
among the most detected residues in the Delmarva Peninsula, and commonly used for Wheat- 
barley-alfalfa and Soybeans (K&e&z et aZ., 1993) and has the following chemical properties: Koc 
= 2.0 x 10 -’ (m3/Kg), KH = 8.90 x 10m8, and h = 14 d (k = 0.0495 d-l). 

Land Use/Cover 

Fig. 3 Agricultural watersheds at the study site: (a) land use, and (b) soil hydrologic groups 

5 



The annual average flow in the root zone and net ground-water recharge are estimated based 
on the monthly water balance by subtracting runoff and evapotranspiration from the sum of 
precipitation and assumed values for irrigation (Thornthwuite and Mather, 1957). The runoff is 
estimated using the Soil Conservation Services (SCS) curve number approach based on 
combinations of hydrologic soil groups and land use0 The evapotranspiration is estimated using a 
quasi-empirical method, which rely on energy balance and heat transfer and empirical crop 
factors. 

ArcView GIS database is developed for the soil properties and land use characteristics using 
the soil survey of Kent County, Maryland (United States Department of Agriculture, Soil 
Conservation Service in cooperation with the Maryland Agricultural Experiment Station and the 
Kent Soil Conservation District, January 1982). CarseZ et al. (1988) provide probability 
distributions for the soil parameters, among others, &, fom, as a functions of hydrologic soil 
groups (A, B, C, and D) at soil depths (0.0-0.3 my 0.30-0.60 m, 0.60-0.90 m, and 0.90-1.20). 
However, the distribution for the saturated hydraulic conductivity, &, and saturated moisture 
content, es, were not reported based on this classification. Since generally different USDA soil 
textures corresponds to different hydrologic groups (e.g., group A corresponds to sand, loamy 
sand, and sandy loam), an attempt is made here to relate the statistics of & and 6” based on soil 

texture to the corresponding Hydrologic group, and assuming that both soil properties, & and & 
are log-normally distributed. The probability distribution for each of the depth-averaged (over 
the root zone) soil properties, &, &, K3, and es, were based on statistics (mean and variance) 
derived for the depth-averaged property for each hydrologic group. Based on the empirical 

distribution, CurseZ et aZ. (1988) suggested Johnson S” distribution for & for the hydrologic 
groups B, C, and D, 

Y = sir&r-t (NXrun) 

in which sinh~’ = hyperbolic arc sine; X = original variable; and Xun = 0.6 is the upper bound on 
field capacity. For the hydrologic group A, a lognormal distribution was used; i.e., Y = ln x. 
Johnson SB transformation is used to describe best the distribution of&,.,, 

in which xun = 0.11 as an upper bound on organic matter. Equations (8) and (9) transform & 
and&,, into normally distributed variables, respectively. The organic carbon fraction is related 

to organic matter by the relationship & =&,/1.724. The & and @ are considered log-normally 
distributed; i.e., Y = ln x, where X is the original variable. The soil bulk density is assumed 
deterministic, because of low coefficient of variation (CarseZ et al., 1988). The median values 
(equal to the mean values) were used to adequately represent bulk density. In this analysis, the 
variables are assumed statistically independent. 

Monte Carlo Method 
The Monte Carlo method is utilized to generate the probability distributions for MT for the 

hydrologic soil groups (A, B, C, and D) and for different land use. The above distributions were 
utilized to generate 1000 random bits for each transformed variable. In each Monte Carlo 
simulation one set of the variables (&., j&, &, and 6$, from an ensemble of 1000 sets, is 
substituted into (1) to generate one value of Mr/MO. This process was repeated for each distinct 
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and possible combination of hydrologic soil group and land use. Since we ignored decay below 
the root zone, A& = iL& In other word, the probabilistic scheme is a conservative one in which 
ground-water vulnerability is measured by A& 

The hydrologic parameters, infiltration, U, ET7 Runoff, and percolation below the root zone, 
v, are fixed at their annually averaged values in the MC simulations. To obtain more general 
distributions applicable for other pesticides used at the site, and associated with the hydrologic 
soil groups and land use, the approach is to repeat the Monte Carlo simulations for different 

values of the partition coefficient, Koc, an d half-life, 1, and then estimate the cumulative 
distributions by regressing on these parameters. However, this effort is not implemented here* 

Figure 4 displays the results of the Monte Carlo simulations, the probability density function 
(pdf) and the cumulative distributions function (cdf) for the pesticide dicamba, associated with 
the hydrologic groups A, B, C and D, in agricultural fields. The pdf of hydrologic group A (well 
drained landscapes) is nearly normally distributed with significant probability density values for 
even relatively larger values of leached mass fractions; e.g., A,&./A& = 0.50. The coeflicient of 
variation of the leached fractions in this case is Cov = 0,24* The pdfs become increasingly 
skewed to the left toward smaller values of the leached fractions, A&/A&, as the soils become 
increasingly poorly drained, as Figure 4 shows. A remarkable observation here is that the 
coeflicient of variation increases to Cov = Oa7S6 for the leached fractions in farmlands of 
hydrologic soil group D. That is, the lower leached fractions (associated with less vulnerabilities) 
show greater uncertainties, whereas for well drained soils, uncertainties of vulnerabilities are 
lower but with greater expected (or mean) leached fractions. The coefficient of variation for 
dicamba leached fractions is estimated to be similar in hydrologic soil groups B and C; Cov = 
0.32 for B and 0.34 for C. At this site, the landscape is dominated by soils that fall in those two 
hydrologic groups, B and C. The mean vulnerability of ground water below farmland soils of 
hydrologic group B is estimated to be twice and a half greater than if the soil is of group C, but 
with almost similar level of uncertainty0 The vulnerability of ground water in the Chesterville 
Branch watershed to dicamba is relatively higher than at Morgan Creek and with less 
uncertainty, because the landscape in the former is dominated by moderately well drained soils 
(B). The cumulative distributions (cdf) show that the probability of leached fractions to exceed a 
given threshold value decreases significantly from well drained to poorly drained landscapes. 
The probability of exceeding 0.42 value? Pr[Mr/MO > 0.421 is about 10 % for soil group A, which 
is high, although dicamba is short lived, half-life = 14 d. Pr[A4JA40 > 0.081 is about 0.6 for 
hydrologic soil group B and almost zero for group C. 

Figures 5(a-c) show ArcView GIS maps for Pr [&&/A& < 0.05, 0.1, 0.21, respectively. Note 
that one minus the displayed values corresponds to the probability of exceeding the leached 
fraction threshold value (0.05, 0.1, and 0.2) These maps do not reflect actual applications, but 
rather the vulnerability of the soil and ground water to potential application of a pesticide with 
characteristics similar to those of dicamba (e.g.Y dicamba may not be used in orchards). For the 
greater threshold value of 0.2, the areas that showed greater ground-water pollution risk (i.e., 
probability of exceeding 20%) are associated with pasture land, orchards, wooded areas along 
the creeks, and hydrologic soil group A, with the latter showing the highest risk. At this value of 
threshold, both soil groups B and C showed minimal vulnerabilities to leached fractions of the 
pesticide, except at areas of the above land uses. As the threshold value is reduced, the 
vulnerability map increasingly reflects the patterns of the land use and hydrologic soil groups in 
the area with significant probabilities (of exceeding threshold value). And at the lower threshold 
values of 0.1 and 0.05, the Chesterville Branch (soil group B) displays greater risk for potential 
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ground-water pollution than much of the eastern portion of Morgan Creek watershed (soil group 
C), with the exception of wooded areas along the northeast branch of Morgan Creek- Figure 5(d) 
shows that mean leached fractions of the pesticide. The orchard and wooded along the creeks 
show the greatest leached fractions, and wetlands and areas of soil group D show the lowest 
values. The standard deviations (Fig. 5 (e)), however, followed the soil drainage pattern more so 
than the land use, with greater values associated with moderately to well drained soils. The 
standard deviations associated with the leached fractions at the Chesterville Branch ranged from 
0.02-0.04, except for lower values in some poorly drained landscapes. 

Summaw 
A probabilistic framework was developed, using Monte Carlo simulations and ArcView GIS, 

for the assessment of ground-water vulnerability to potential pollution by pesticides. The Monte 
Carlo simulations were conducted to derive the probability density function and cumulative 
distributions of leached fractions of the pesticide dicamba below the root zone, using a process- 
based screening model. The methodology was applied to assess the risk for potential ground- 
water contamination in two agricultural watersheds in the Mid-Atlantic coastal plain by 
relatively short-lived pesticides with chemical characteristics similar to those reported for 
dicamba. The Monte Carlo simulations showed that farmlands with well drained soils may be at 
greater risk for ground-water pollution by the pesticide and with lower uncertainties than in 
poorly drained soils. The ArcView GIS probability maps showed that the probability of 
exceeding a given threshold value of leached fraction of the pesticide is related to the soil 
drainage characteristics of the landscape, including the hydrologic group and land use_ Well 
drained landscapes showed the highest mean vulnerabilities and risk for exceeding the threshold 
value of assumed allowable leached fractions, including orchards, wooded areas along the creeks 
in the two watersheds, and pasture land. The estimated standard deviations followed the 
hydrologic soil groups rather than the land-use pattern, and with smaller values in the poorly 
drained landscapes. These results may have implication on the management of pesticides in 
agricultural watersheds. 
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